
Novo RTOS
for use with the BoostC, BoostC++ and BoostBasic

Compilers

Reference Manual

V1.08

Index
Novo RTOS...6

Introduction...6
Super Loop How it works..6
Super Loop The Waste...6
Benefits of RTOS..6
RTOS and a single task..7

Novo composition..7
Novo Queues..7
Task Priorities...7
Task and Event Handles..7
Novo Events..7
Counting Semaphore...7
Maximum Number of Priorities...8
Maximum Number of Tasks...8
Hardware and Software Stacks...8

Important notes on usage..9
Placement of yielding functions..9
Quantity of yielding functions...9

Task Functions...9
Novo API...10

Novo Base Functions...10
SysInit..10
SysCreateTask..10
SysStartTask...11
Sys_StopTask...11
Sys_Yield..11
SysGetTaskStatus..11

Task Priority Functions..12
SysSetPriority...12
SysGetPriority...12

Event Functions..12
SysSignalSemaphore...12
SysSignalSemaphoreIsr...12
Sys_WaitSemaphore..13
SysTrySemaphore..13
SysReadSemaphore...13
SysWaitTimedOut...13

Timer Functions..13
SysTimerUpdate...13
Sys_Sleep..14
SysGetTime...14
SysGetElapsedTime...14

Critical Sections...15
SysCriticalSectionBegin..15
SysCriticalSectionEnd...15
Critical Sections General Notes..15
Critical Sections with Prioritized Interrupts Notes ...16
Changing Critical Section Macros..16

Building Custom Novo Libraries..17
Important Note..17
Files to Create for a Custom Build..17

Page 2 SourceBoost Technologies Novo RTOS Manual

Typical Novo Library project file...17
Typical Novo Configuration file Contents..17
Naming convention..18
Build Options..18
Building the custom library...19
How to use the custom library..19

Semaphores and Priorities Under the hood..21
Semaphores Queues..21
What happens when a Semaphore is signaled..21
Pending Event Queue..21

Sharing a resource between threads...22
Overview..22
Example 1 - For BoostC Compiler..22
Example 2 - For BoostC Compiler..25

General Support...28

Novo RTOS Manual SourceBoost Technologies Page 3

This page is intentionally left blank.

Page 4 SourceBoost Technologies Novo RTOS Manual

Novo RTOS Manual SourceBoost Technologies Page 5

Novo RTOS

Introduction
The word Novo is Latin for change. Novo was given this name because its changes
the way you construct you program – once you understanding how to use it, it
makes things much easier. It you want to code a system with more than one job
(or task) to do, without an RTOS you have little choice but to pursue the classical
super loop programming methodology.

Novo was specifically written for use with the SourceBoost Technologies BoostC,
BoostC++ and BoostBasic compilers for PICmicro, although it would be quite
possible to port it to other compilers and platforms.

Super Loop How it works
With a super loop the code whizzes round in a big loop, calling different pieces of
code. Each piece of code will have its own state tracking variable so it knows whats
its already done, and what its needs to do next as part of its task. The mechanism
of keeping track and controlling transitions between one state and the next is
called a state machine.

Super Loop The Waste
All in all the super loop programming methodology can be pretty wasteful:

i) Unnecessary processor clock cycles - With a super loop some tasks lay
dormant, but still consume many processor clock cycles just checking that
they have nothing to do.

ii) Longer coding time – The state machine code doesn't look after itself, the
programmer has to keep track of the state variables and state machine.

iii)Long testing and debug time – In our experience its so easy to make a
mistake if changes are made to state machine the chances of code changes
working “first time” is substantially reduce.

Benefits of RTOS
Using an RTOS removes the wasteful aspects of super loop programming. Heres
how its helps:

i) Better utilization of processor clock cycles – by allowing tasks to “sleep” or
stopping a task altogether, their processor usage falls to next to nothing
allowing other tasks to have more processor time available.

ii) Shortened coding time – By reducing the code required to keep track of the
state of a task, code becomes much easier. The RTOS is keeping track of the
tasks state for us. The code also becomes much clearer.

iii)Testing and debug time reduced – By relieving much of the coding of the
state machine and state management, the state machine code has a much
higher chance of working “first time”.

Page 6 SourceBoost Technologies Novo RTOS Manual

RTOS and a single task
If you have only a single task and never want to add another, then there is no
benefit to using an RTOS. In fact it is detrimental because it uses both RAM and
ROM that then cannot be used by the application. This is normally the exception.
In real applications, normally you want to scan a keypad, flash a light and update a
display in a way that appears as though they are all happening at the same time.

Novo composition

Novo Queues
It has four queue types run, sleep and event, pending event. A task is added to
the run queue when it can be run. A task is moved from the run queue to the sleep
queue when the task is sleeping or when the task is waiting for an event with a
timeout. A task is added to the event queue when a task is waiting for an event to
occur. When an event occurs the task is moved from the event queue to the
pending event queue, and then finally to the run queue.

Task Priorities
Each task has a priority associated with it. The lower the task priority value, the
higher the task priority. A task with a priority value of 0 (zero) has the highest
priority. Only the highest priority tasks in the run queue are executed when
another task yields.

Task and Event Handles
In order to refer to a task or event Novo uses the abstract concept of handles. The
reason for using this concept is that allows future changes of the implementation
of Novo without greatly affecting existing code.

Novo Events
Novo handles are in the form of semaphores. A semaphore allows once task to
signal to another task that something has happened. The benefit of a semaphore
over a simple flag that one task sets and another one monitors, is that a task
waiting for a semaphore consumes very few processor cycle. The task that is
waiting is not continuously polling, the task will be awoken when the semaphore is
signaled.

Counting Semaphore
Novo has counting semaphores. Every time a semaphore is signaled, the
semaphore count value is increased. The semaphore value is decreased every time
a wait for semaphore function is called, before execution returns to the waiting
task.

Novo RTOS Manual SourceBoost Technologies Page 7

Maximum Number of Priorities
In order to economize on usage of memory, Novo allows a maximum of 15
different priority levels (0 to 14).

Maximum Number of Tasks
In order to economize on usage of memory, Novo allows a maximum of 15 tasks
(Task handles in the range 0 to 14).

Hardware and Software Stacks
Novo uses a composite stack, that is it uses a combination of both hardware and
software stacks. The use of a software call stack allows Novo to be able to resume
a task at from the point at which the task yields. The yielding points can be at any
point in the call tree, but not in any function called by more than one task.

Each task has its software stack which is independent of all other tasks.

In order for the software call stack to be enabled, the -swcs command line option
needs to be used with the boostlink linker.

Page 8 SourceBoost Technologies Novo RTOS Manual

Important notes on usage

Placement of yielding functions
● The placement of yielding functions affect the amount of RAM used. The

deeper they appear down the call tree the greater the amount of RAM used.
Each level of call stack deeper a yielding function is placed uses an extra
byte of RAM.

● Yielding functions must not be placed in functions called by more than one
task, unless extreme care is taken to ensure that both tasks cannot yield
from within this function at the same time.
BoostLinker will generate a 'serious warning' if it detects this occurring.

Quantity of yielding functions
Each yielding function call generates a new return point. Each return point is added
to a table, consuming more ROM. This table is limited to 255 instructions in length
(including any code page switching that maybe required) and is not allowed to
cross a page boundary. If the table becomes full no more yielding points can be
added. If the table overflows a boundary crossing error will be reported.

So it is recommended that you use a minimum number of yielding function calls.

Task Functions
Tasks start at a task root function. This function is where execution will start when
a task is run.

The name of the root function of any task must be prefixed with “Task”.

Novo Task names in BoostC and BoostC++

void Task_FlashLight()
void Task0()
void TaskBlinkLed()

Novo Task names in BoostBasic

sub Task_FlashLight()
sub Task0()
subTaskBlinkLed()

The tasks functions need to have this special name prefix because it affects how
the tasks are treated in BoostLink linker.

Novo RTOS Manual SourceBoost Technologies Page 9

Novo API
All Novo API functions begin with Sys or Sys_. The function that begin with Sys_
(ie have the additional underscore) yield to the task scheduler, thereby causing a
task switch.

Specific Note for BoostC/C++ users:

Some of the Novo routines are implemented as true functions and some as
macros. In the following description all Novo API functions are treated as though
they are implemented as functions to maintain clarity in the arguments and return
values.

Specific Note for BoostBasic users:

Some of the routines are implemented as pure macros and some call functions and
subroutines with a thin macro wrapper. This simply means that all of the Novo api
functions are are invoked with using the call keyword. In the following description
all Novo API functions are treated as though they are implemented as functions to
maintain clarity in the arguments and return values.

Novo Base Functions

SysInit
BoostC/C++ Function: void SysInit();

BoostBasic Function: sub SysInit()
Arguments:

Return:
Callable from: main execution thread only.

Description: This function initializes the Novo RTOS system by setting the values of the data structure
that hold non-task specific data.

Notes: This function should only be called once in an application and should be called before any
other Novo API function is called.

SysCreateTask
BoostC/C++ Function: void SysCreateTask(TASK_HANDLE hTask, BYTE priority, void (*taskFuncPtr)());

BoostBasic Function: sub SysCreateTask(hTask as TASK_HANDLE , priority as BYTE , taskFuncPtr as NovoTask)
Arguments: hTask – handle to the task to start.

priority – the priority of the task (lower value means higher priority).
taskFuncPtr – a pointer to the task function.

Return:
Callable from: main and task execution threads

Description: This function is used to create a task. The creation process initializes the data structure that
holds information about the task.

Notes: This function must be called for each task before any other task related function is called.

Page 10 SourceBoost Technologies Novo RTOS Manual

SysStartTask
BoostC/C++ Function: void SysStartTask(TASK_HANDLE hTask);

BoostBasic Function: sub SysStartTask(hTask as TASK_HANDLE)
Arguments: hTask - handle to a task.

Return:
Callable from: main and task execution threads

Description: SysStartTask causes the a task with the handle specified to join the running queue.
Execution of the task may or may not occur at the next scheduler yield, it depends on the
relative priorities of other tasks in the queue.

Notes: The scheduler only executes the task(s) in the run queue with the highest priority.

Sys_StopTask
BoostC/C++ Function: void Sys_StopTask(TASK_HANDLE hTask);

BoostBasic Function: sub Sys_StopTask(hTask as TASK_HANDLE)
Arguments: hTask - handle to a task.

Return:
Callable from: main and task execution threads

Description: Sys_StopTask causes a task to be removed from any queues it is in and its status to be set
to stopped. Execution of a stopped task can be resumed by calling the SysStartTask
function.

Notes:

Sys_Yield
BoostC/C++ Function: void Sys_Yield();

BoostBasic Function: sub Sys_Yield()
Arguments:

Return:
Callable from: main and task execution threads

Description: This function causes a task to yield to the scheduler. Yielding to the scheduler allows the
scheduler to perform a number of background operations and allows the scheduler to decide
which task to run next.

Notes:

SysGetTaskStatus
BoostC/C++ Function: BYTE SysGetTaskStatus(TASK_HANDLE hTask);

BoostBasic Function: function SysGetTaskStatus(hTask as TASK_HANDLE) as byte
Arguments: hTask - handle to a task.

Return: A byte of data representing the task status.
Callable from: main and task threads

Description: This macro gets the current status of a task. The status consists of a number of bits, which
are NOT mutually exclusive, so the task state (TS) values need to be bitwise ANDed with the
status value to determined the status.

● TS_IN_RUN_Q – Task is in the run queue.

● TS_IN_WAIT_Q – Task is in the wait queue (waiting for a timeout).

● TS_IN_EVENT_Q – Task is in the event queue (waiting for an event)

● TS_EVENT_TIMEOUT – Waiting for an event terminated because of a timeout.

● TS_NOT_STOPPED – Task is not stopped, ie it is currently active in some way (in
one of the queues).

Notes:

Novo RTOS Manual SourceBoost Technologies Page 11

Task Priority Functions

SysSetPriority
BoostC/C++ Function: void SysSetPriority(TASK_HANDLE hTask, BYTE priority);

BoostBasic Function: sub SysSetPriority(hTask as TASK_HANDLE, priority as BYTE)
Arguments: hTask – handle to a task.

priority – the required task priority.
Return:

Callable from: main and task execution threads
Description: Changes the priority of a task. This may cause a task to stop/start being executed

depending on the relative priority of tasks in the run queue. If the task is in the event in the
event queue its waiting priority will be changed

Notes: Only tasks the are in the run queue with the highest priority actually get executed. If
multiple task have the highest priority, then they are executed in a round robin fashion.

SysGetPriority
BoostC/C++ Function: BYTE SysGetPriority(TASK_HANDLE hTask);

BoostBasic Function: function SysGetPriority(hTask as TASK_HANDLE) as byte
Arguments:

Return:
Callable from: main and task threads

Description: This function returns the current priority of the specified task.
Notes:

Event Functions

SysSignalSemaphore
BoostC/C++ Function: void SysSignalSemaphore(EVENT_HANDLE hSemaphore);

BoostBasic Function: sub SysSignalSemaphore(hSemaphore as EVENT_HANDLE)
Arguments: hSemaphore – handle to a semaphore.

Return:
Callable from: main and task threads

Description: This function signals a semaphore, that is it increases the semaphore value by 1. As a
consequence any task that is waiting on the semaphore will be moved from the wait and
event queues to the run queue.

Notes:

SysSignalSemaphoreIsr
BoostC/C++ Function: void SysSignalSemaphoreIsr(EVENT_HANDLE hSemaphore);

BoostBasic Function: sub SysSignalSemaphoreIsr(hSemaphore as EVENT_HANDLE)
Arguments: hSemaphore – handle to a semaphore.

Return:
Callable from: ISR

Description: This function signals a semaphore from within an interrupt service routine (ISR), that is it
increases the semaphore value by 1. Because this function is called within an ISR, the event
wakeup action iwill not be completed until the next task scheduler yield occurs. This is
performed by the semaphore signaling being put in a an ISR command queue. The
command queue only has a length of 1, so if more than one event object is signaled before
the next scheduler yield occurs, then task wakeup will be missed, leaving the task in the
event queue.

Notes:

Page 12 SourceBoost Technologies Novo RTOS Manual

Sys_WaitSemaphore
BoostC/C++ Function: void Sys_WaitSemaphore(EVENT_HANDLE hSemaphore, TICK_COUNT timeOut);

BoostBasic Function: sub Sys_WaitSemaphore(hSemaphore as EVENT_HANDLE , timeOut as TICK_COUNT)
Arguments: hSemaphore – handle to a semaphore.

timeOut – timeout time in system ticks.
Return:

Callable from: task threads
Description: This macro causes the current value of a counting semaphore to be examined. If the

counting semaphore is non-zero then the function decrements the semaphore value and
returns immediately. If the counting semaphores value is zero, then the execution does not
return to the task until the semaphore is signaled or the timeout time has elapsed.

Notes: If the wait times out before the semaphore is signaled, the task status TS_EVENT_TIMEOUT
is set. Test the task status using SysGetTaskStatus() or use the SysWaitTimedOut() function
to check for timeouts.

SysTrySemaphore
BoostC/C++ Function: FLAG SysTrySemaphore(EVENT_HANDLE hSemaphore);

BoostBasic Function: function SysTrySemaphore(hSemaphore as EVENT_HANDLE) as FLAG
Arguments: hSemaphore – handle to a semaphore.

Return: Returns true if semaphore value is non-zero.
Callable from: main and task threads

Description: Tests a counting semaphore for a non-zero value. If found to be non-zero it decrements the
semaphore and returns a true value. If found to be zero it returns a false value. This allows
a semaphore to be tested without a task having to wait for the semaphore.

Notes:

SysReadSemaphore
BoostC/C++ Function: BYTE SysReadSemaphore(EVENT_HANDLE hSemaphore);

BoostBasic Function: function SysReadSemaphore(hSemaphore as EVENT_HANDLE) as byte
Arguments: hSemaphore – handle to a semaphore.

Return: main and task threads
Callable from: Critical Section or ISR if SysSignalSemaphoreIsr is used.

Description: Retrieves the current value of a counting semaphore.
Notes:

SysWaitTimedOut
BoostC/C++ Function: FLAG SysWaitTimedOut(TASK_HANDLE hTask);

BoostBasic Function: function SysWaitTimedOut(hTask as TASK_HANDLE) as FLAG
Arguments: hTask – handle of the task who's timeout bit is to be checked.

Return: flag with a true value if the last task Wait timed out.
Callable from: main and task threads

Description: This function returns a value that indicates whether the last event wait (eg
Sys_WaitSemaphore) for a task completed because of a timeout instead of the semaphore
being signaled.

This function returns the same as (SysGetTaskStatus(hTask) & TS_EVENT_TIMEOUT) != 0
Notes:

Timer Functions

SysTimerUpdate
BoostC/C++ Function: void SysTimerUpdate();

BoostBasic Function: sub SysTimerUpdate()
Arguments:

Return:
Callable from: main thread or interrupt service routine

Description: This function needs to be called periodically to update the system time value that is used by
sleeping and waiting tasks. The rate at which this function is called set the timebase of the
system timing functions.

For example if you want Sys_Sleep(100) to result in 100ms sleep, then SysTimerUpdate
should be called every 1ms. This is normally achieved by by calling the SysTimerUpdate
function from a period interrupt routine.

Notes:

Novo RTOS Manual SourceBoost Technologies Page 13

Sys_Sleep
BoostC/C++ Function: void Sys_Sleep(TICK_COUNT sleepTime);

BoostBasic Function: sub Sys_Sleep(sleepTime as TICK_COUNT)
Arguments: sleepTime – the time to sleep the current task for in system ticks.

Return:
Callable from: task threads

Description: This macro allows a task to be put to sleep for the specified amount of time. The time value
is in system ticks. The system tick time is determined by the rate at which SysTimerUpdate
is called. While a task is sleeping, it usage of processor clock cycles is minimized.

Notes:

SysGetTime
BoostC/C++ Function: TICK_COUNT SysGetTime();

BoostBasic Function: function SysGetTime() as TICK_COUNT
Arguments:

Return:
Callable from: main and task threads

Description: Retrieves the current system tick count.
Notes:

SysGetElapsedTime
BoostC/C++ Function: TICK_COUNT SysGetElapsedTime(TICK_COUNT startTime);

BoostBasic Function: function SysGetElapsedTime(startTime as TICK_COUNT) as TICK_COUNT
Arguments: startTime – start time value,

Return: Returns the elapsed time
Callable from: main and task threads

Description: Computes the time elapsed since the startTime.
Notes: The startTime value is normally generated from a call to SysGetTime().

The result is invalid if the time elapsed is > the maximum value that TICK_COUNT can hold.

Examples:
if the TICK_COUNT data is 2 bytes long (16 bits), the maximum valid elapsed time that can
be measure is 65535 ticks.
if the TICK_COUNT data is 1 bytes long (8 bits), the maximum valid elapsed time that can
be measure is = 255 ticks.

Page 14 SourceBoost Technologies Novo RTOS Manual

Critical Sections

SysCriticalSectionBegin
BoostC/C++ Function: void SysCriticalSectionBegin();

BoostBasic Function: sub SysCriticalSectionBegin()
Arguments:

Return:
Callable from: main and task threads

Description:

This macro is used when a critical section of code is entered. By calling this function the
section of code can be access Novo data and be sure that nothing outside will be changing
the data. This is acheived by disabling interrupts. The critical section is exited by using the
complementary macro SysCriticalSectionEnd().

Notes: Typical use would be to examine two semaphore's that are changed by an interrupt service
routine, knowing that they would not change part way through execution of this section of
code. Some Novo functions internally use critical sections to prevent data corruption by
interrupts.

Other Important points:

● Critical sections can be nested.
● Critical sections may increase interrupt latency.
● Critical section macros can be re-written for applications that require minimal

interrupt latency, and don't call any Novo functions from within the interrupt
service routine. In this case the Novo library would need to be re-built from the
source code.

SysCriticalSectionEnd
BoostC/C++ Function: void SysCriticalSectionEnd();

BoostBasic Function: sub SysCriticalSectionEnd()
Arguments:

Return:
Callable from: main and task threads

Description: This macro is used to end a critical code section, it is the complementary function to
SysCriticalSectionBegin(). See SysCriticalSectionBegin() for more details.

Notes:

Critical Sections General Notes
These notes are more easily understood with access to Novo source code.

1. Critical Section Macros can be nested:
The critical section macros use a counter so that nesting is possible. This
allows user code to call a Novo API function that has critical sections from
within a critical section.

2. Don't use Critical Section Macros in ISR:
Code that uses the critical section macros should NOT be called from within
an interrupt service routine (ISR), this includes calling any Novo API
functions that use critical sections (most). Doing so will cause corruption of
the critical section nesting count, therefore resulting in interrupts being
potentially enabled in critical sections.

Novo RTOS Manual SourceBoost Technologies Page 15

3. Create New functions or Macro if necessary:
To avoid critical section macros in an ISR, it may be necessary to add new
functions or macros, or access the scheduler data directly. For example to
gain access to the scheduler tick value normally the SysGetTime(); function
is called. This could be replaced in an ISR by scheduler.os_tickCnt;

4. Minimize Interrupt Latency:
Novo RTOS has been written to keep the affects on interrupt latency low,
with trade offs against code size. Critical section macros by default disable
interrupts, so they potentially causing a delay in response (increase latency)
to an interrupt. Keep critical sections short to minimize increase interrupt
latency further. If no Novo API functions or scheduler data is accessed in an
ISR and no user code critical sections are used, then no critical sections are
actually necessary. The critical section macros can be rewritten to do
nothing, thus interrupt latency will be minimized.

Critical Sections with Prioritized Interrupts Notes
Changes require access to Novo source code to allow custom library builds.

It is common practice to use the high priority interrupt for ultra time critical
events, and so use the low priority interrupt to call Novo functions, in which case
the notes below are important.

1. Don't call from Both High and Low Priority interrupt routines:
If you are using High and Low priority interrupt routines, then only call Novo
API functions (those that are callable from an ISR) in one of the interrupt
routines or corruption may result.

2. Modify Macros when using PIC18 prioritized interrupts:
Ensure the routine ISR that calls Novo API routines (or modifies Novo
scheduler data) is disabled/enabled in the critical section macro. The
supplied macro disables the high priority ISR, so corruption would result if
Novo API functions or scheduler data is modified in the low priority ISR. This
can be resolved by changing GIE to GIEL in the critical section macros when
calling Novo API functions from within a low priority interrupt service routine.

Changing Critical Section Macros
Changing the critical section macros will require a complete rebuild of the Novo
Library. It is recommended that you take a complete copy of the Novo source code
and modify that when creating a custom build.

Page 16 SourceBoost Technologies Novo RTOS Manual

Building Custom Novo Libraries
To minimize the use of RAM you may decide to create a Novo library that meets
your exact needs. In order to do this you will need to have the Novo source code
(which you will have access to if you have an appropriate license – please visit
www.sourceboost.com). The source code is made available by running
goodies.exe.

Novo has been written using the BoostC compiler so Novo libraries can only be
built using the BoostC or BoostC++ compilers.

Important Note
Just changing the header file without re-building a library will potentially cause all
sorts of bizarre behavior to occur as the header file will no longer match the library
- so don't do it!

Files to Create for a Custom Build
1) Project file (.__c) to build the library.

2) Custom configuration header file (.h) that contains the custom options.

3) Source file to build (.c).

The easiest way to create the files is to copy and rename the .c and .h files from
an existing library build (that can be found in the novo folder), and create a new
project file. Be sure to follow the recommended Naming convention.

File recommended file locations:

Custom Novo Build Files Location

Configuration header file SourceBoost Installation folder\include

Project SourceBoost Installation folder\novo

source file SourceBoost Installation folder\novo

Typical Novo Library project file
File name: novolib_pic18t6e4ts2.c

// build novo library with appropriate configuration

#include <novocfg_pic18t6e4ts2.h>
#include "novo.c"

Typical Novo Configuration file Contents
File name: novocfg_pic18t6e4ts2.h

Novo RTOS Manual SourceBoost Technologies Page 17

#define _NOVOCFG_H_

// Maximum number of tasks and events
#define MAX_TASKS 3
#define MAX_EVENTS 5

// Tick count data size
typedef unsigned int TICK_COUNT;

// future - the ability to disable features to save RAM and ROM
// #define _NOVO_EVENTS
// #define _NOVO_TIMERS
// #define _NOVO_PRIORITIES

Naming convention
Its is important to stick to a consistent naming convention or the configuration of a
build will be unknown, and will then no doubt cause usage issues.

Typical configuration file name: novocfg_pic18t4e4ts1p.h
novocfg - novo config file
pic18 - target
t4 - tasks maximum of 4
e4 - events maximum of 4 (also means events are supported).
ts2 - timer size 2 bytes (also means timers are supported).
p - means priorities are support

Typical library build source file name: novolib_pic18t4e4ts1p.c
novolib - novo lib file
pic18 - target
t4 - tasks maximum of 4
e4 - events maximum of 4 (also means events are supported).
ts2 - timer size 2 bytes (also means timers are supported).
p - means priorities are support

The built library file name will be:
novolib_pic18t4e4ts1p.lib

Build Options
The build options for a build are contained in a header file. This header file is used
during the process of building of the library and is included into files that call novo
functions.

Novo can be built with different levels of functionality. As more functionality is
added there is an increase in the amount of RAM and ROM that is required.

Build options Desc

MAX_TASKS Numerical that sets the maximum number of tasks

MAX_EVENTS Numerical that sets the maximum number of events

TICK_COUNT Data type that determines the size of the data used
for Novo sleep and wait timing.

Page 18 SourceBoost Technologies Novo RTOS Manual

Build options Desc

_NOVO_MINIMAL_RAM By defining this symbol Novo combines some of the
task specific data to reduce the amount of RAM
used. Not defining this symbol can be useful for
debugging purposes.

_NOVO_EVENTS By defining this symbol Novo supports Events (ie
semaphores).

_NOVO_TIMERS By defining this symbol Novo supports timer
Dependant functions such as Sys_Sleep() and
Sys_WaitSemaphore().

_NOVO_PRIORITIES By defining this symbol Novo supports tasks with
different priorities.

Building the custom library
Things to check:

1) Check that your .c file includes the appropriate configuration header file.

2) Check that your .c has been added to the project

3) Check that your project is setup to build a library (SourceBoost IDE menu
Settings->Options->Compiler Options).

Your library is ready to be built. Initiate a build (press the 'C' button, followed by
the 'L' button in SourceBoost IDE). The project should compile and link
successfully.

How to use the custom library
In order to use the custom library in a project:

1) Add the custom Novo library to the project (so that it is linked in during a
project build). see the SourceBoost IDE and BoostC/BoostC++ manuals on
how todo this.

2) Include the custom Novo build configuration header file and novo.h in the
source files that call novo functions.

The start of a typical source file would look like this:

Novo RTOS Manual SourceBoost Technologies Page 19

// BoostC/BoostC++ Code that uses Novo RTOS
#include <system.h>
#include <novocfg_pic16t3e5ts1.h>
#include <novo.h>

#pragma DATA _CONFIG, _CP_OFF & _CCP1_RB0 & _DEBUG_OFF & _WRT_PROTECT_OFF &
_CPD_OFF & _LVP_OFF & _BODEN_OFF & _MCLR_ON & _PWRTE_OFF & _WDT_OFF &
_HS_OSC

void main()
{
....
....

rem BoostBasic Code that uses Novo RTOS

#include <basic\novocfg_pic16t3e5ts1_h.bas>
#include <novo_h.bas>

#pragma DATA _CONFIG, _CP_OFF & _CCP1_RB0 & _DEBUG_OFF & _WRT_PROTECT_OFF &
_CPD_OFF & _LVP_OFF & _BODEN_OFF & _MCLR_ON & _PWRTE_OFF & _WDT_OFF &
_HS_OSC

sub main()
....
....

Page 20 SourceBoost Technologies Novo RTOS Manual

Semaphores and Priorities Under the hood

Semaphores Queues
Each semaphore has its own queue of tasks waiting for the semaphore. They are
ordered according to their priorities. Higher priority semaphores are tasks are at
the front of the queue, low priority tasks at the back of the queue.

If tasks have the same priority they appear in the semaphore queue in the order in
which they are added, the first one to be added will be ahead of others in the
queue.

What happens when a Semaphore is signaled
When a semaphore is signaled the task that is at the front of the semaphore's
queue is moved from the semaphores queue (and from the sleeping queue if it has
a wait timeout) into the run queue ready for execution. Only one task is moved
from the semaphore's queue to the run queue each time a semaphore is signaled.
If the semaphore's queue is empty, then no tasks are moved to the run queue
when the semaphore is signaled, instead the semaphores value is increase.

Pending Event Queue
In reality when a semaphore is signaled, the task at the front of the semaphore's
queue is not directly moved into the run queue. It is first moved into the pending
event queue. This queue is used to minimize the amount of time that it takes to
signal a semaphore. This is beneficial for semaphores that are signaled in an
interrupt service routine. The pending events queue is handled the next time the
task yield occurs.

Novo RTOS Manual SourceBoost Technologies Page 21

Sharing a resource between threads

Overview
There are many occasions in which you want to share a common resource between
two separate tasks. If any task has completely finished with a resource before it
yields, no special action is required because naturally the resource is available
before another thread can do anything. But if a task is part way through an
operation with a shared resource then care has to be taken or another task could
start trying to work with that resource.

The answer to this sharing problem is to use a semaphore. A semaphore can be
set to signal that a resource is in use, so that another task has a means of
checking the availability of the resource.

Example 1 - For BoostC Compiler
This example shares Port B between two tasks which both generate and output
sequence on the port when they have control over the port. When the semaphore
is signaled it means that Port B is available.

Page 22 SourceBoost Technologies Novo RTOS Manual

///
// Portb sharing using a semaphore
///
// Uses Novo RTOS
//
// This has two tasks. They both share PORTB for
// output. A semaphore is used in binary mode to
// ensure that only one task is using PORTB at a
// time.
//
// Target Device: PIC16F88 20MHz
//
// Author: David Hobday
//
// Version History:
// V1.0 - 19/09/2006
// Initial release.

#include <system.h>
#include <novocfg_pic16t3e5ts1.h>
#include <novo.h>

#pragma DATA _CONFIG, _CP_OFF & _CCP1_RB0 & _DEBUG_OFF & _WRT_PROTECT_OFF & _CPD_OFF &
_LVP_OFF & _BODEN_OFF & _MCLR_ON & _PWRTE_OFF & _WDT_OFF & _HS_OSC

#define hTask0 0
#define hTask1 1

#define hSemaPortbAvailable 0

void interrupt(void)
{

if(intcon.TMR0IF)
{

// update system time every 1ms (actually is 204.8us x 5 = 1.024ms)
static BYTE intDivider;
if(++intDivider == 5)
{

intDivider = 0;
SysTimerUpdate();

}

intcon.TMR0IF = 0; //clear TMR0 overflow flag
}

}

void InitTimer()
{

// configure Timer0
option_reg.T0CS = 0; // use internal clock
option_reg.PSA = 0; // use prescaler form timer 0

// so we get an interrupt around every 204.8us with 20MHz Clock
// set prescaller to divide by 4

option_reg.PS0 = 1;
option_reg.PS1 = 0;
option_reg.PS2 = 0;

// enable interrupts
intcon.TMR0IE = 1; //enable TMR0 overflow bit
intcon.GIE = 1;

}

void Task0()
{

while(1)
{

Sys_WaitSemaphore(hSemaPortbAvailable, EVENT_NO_TIMEOUT);

portb = 0b00000000;
Sys_Sleep(255);
portb = 0b10000001;
Sys_Sleep(255);
portb = 0b01000010;
Sys_Sleep(255);

Novo RTOS Manual SourceBoost Technologies Page 23

portb = 0b00100100;
Sys_Sleep(255);
portb = 0b00011000;
Sys_Sleep(255);

SysSignalSemaphore(hSemaPortbAvailable);
Sys_Yield();

}
}

void Task1()
{

while(1)
{

Sys_WaitSemaphore(hSemaPortbAvailable, EVENT_NO_TIMEOUT);

BYTE i;
for(i = 0; i < 5; i++)
{

portb = 0b01010101;
Sys_Sleep(255);
portb = 0b10101010;
Sys_Sleep(255);

}

SysSignalSemaphore(hSemaPortbAvailable);
Sys_Yield();

}
}

void main()
{

ansel = 0;
trisb = 0x00;

InitTimer();

SysInit();

SysCreateTask(hTask0, 2, Task0);
SysCreateTask(hTask1, 2, Task1);

SysSignalSemaphore(hSemaPortbAvailable); // allow initial use of portb

// Task0 will be the first to run as it was started first and
// both tasks have equal priority. Neither task will run however until
// we executed the first yielding instruction.
SysStartTask(hTask0);
SysStartTask(hTask1);

while(1)
{

Sys_Yield();
}

}

Page 24 SourceBoost Technologies Novo RTOS Manual

Example 2 - For BoostC Compiler
The following example has a shared resource (which in this case is the function
that uses the software stack) used in three tasks. This occurs because a function
that yields (so requiring use of the software stack) is called from more than one
task. Two of the tasks wait (effectively go to sleep) by calling the Novo RTOS
Sys_WaitSemaphore function, while the other task keeps running and tries the
semaphore by calling the Novo RTOS SysTrySemaphore function.

Novo RTOS Manual SourceBoost Technologies Page 25

// Example of resource sharing between tasks using a common function that yields.
//
// When using the Novo RTOS it is dangerous to call a function that yields in more
// than one task because the software call stack can be corrupted.
//
// This code shows the how a function that yields can be safely called from more
// than one task. It does this by treating the function as a shared resource, using
// a semaphore to signal its availability.
//
// Author: David Hobday
// Date: 12/05/2005
// Target: PIC16
//

#include <novocfg_pic16t3e5ts1.h>
#include <novo.h>

#define hTask0 0
#define hTask1 1
#define hTask2 2

#define hSemPutsResource 0

void puts(unsigned char c)
{
 // This routine doesn't actually do anything other than yield once before
 // loading the txchar variable.
 //
 // The code in this function could be accessing a hardware uart.
 bool busy = 1;
 while(busy)
 {
 Sys_Yield();
 busy = 0;
 }

 unsigned char txchar = c;
}

void Task0()
{
 while(1)
 {
 // see if we can get the resource, might never get it as we are not in the queue
 if(SysTrySemaphore(hSemPutsResource))
 {
 puts('0');
 puts('0');
 puts('0');
 SysSignalSemaphore(hSemPutsResource); // release the resource
 }
 // do other continous stuff
 Sys_Yield();
 }
}

void Task1()
{
 while(1)
 {
 // wait for then lock the resource
 Sys_WaitSemaphore(hSemPutsResource, EVENT_NO_TIMEOUT);
 puts('1');
 puts('1');
 puts('1');
 SysSignalSemaphore(hSemPutsResource); // release the resource
 Sys_Sleep(10);
 }
}

void Task2()
{
 while(1)
 {
 // wait for then lock the resource
 Sys_WaitSemaphore(hSemPutsResource, EVENT_NO_TIMEOUT);
 puts('2');

Page 26 SourceBoost Technologies Novo RTOS Manual

 puts('2');
 puts('2');
 SysSignalSemaphore(hSemPutsResource); // release the resource
 Sys_Sleep(10);
 }
}

void main()
{
 SysInit();
 SysCreateTask(hTask0, 2, Task0);
 SysCreateTask(hTask1, 2, Task1);
 SysCreateTask(hTask2, 2, Task2);

 SysStartTask(hTask0);
 SysStartTask(hTask1);
 SysStartTask(hTask2);

 SysSignalSemaphore(hSemPutsResource);

 while(1)
 {
 Sys_Yield();
 SysTimerUpdate(); // generate a tick
 }
}

Novo RTOS Manual SourceBoost Technologies Page 27

General Support
For general support issues, please mail support@sourceboost.com

Always Pleased To Hear From You!

We are always pleased to hear your comments, this helps us to satisfy your needs.
Send mail to support@sourceboost.com or post your comments on the
SourceBoost Forum.

Legal Information

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO
USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

THE AUTHOR RESERVES THE RIGHT TO REJECT ANY LICENSE (REGISTRATION) REQUEST WITHOUT
EXPLAINING THE REASONS WHY SUCH REQUEST HAS BEEN REJECTED. IN CASE YOUR LICENSE
(REGISTRATION) REQUEST GETS REJECTED YOU MUST STOP USING THE SourceBoost IDE, BoostC,
BoostC++, BoostBasic, C2C-plus, C2C++ and P2C-plus COMPILERS AND REMOVE THE WHOLE
SourceBoost IDE INSTALLATION FROM YOUR COMPUTER.

Microchip, PIC, PICmicro and MPLAB are registered trademarks of Microchip
Technology Inc.

SourceBoost, BoostC, BoostC++, BoostBasic, BoostLink, C2C-plus, C2C++ and
P2C-plus are trademarks of SourceBoost Technologies.
Other trademarks and registered trademarks used in this document are the
property of their respective owners.

http://www.sourceboost.com
Copyright© 2004-2009 Pavel Baranov

Copyright© 2004-2009 David Hobday

Page 28 SourceBoost Technologies Novo RTOS Manual

http://www.sourceboost.com/
mailto:support@sourceboost.comoror
mailto:support@sourceboost.com

	Novo RTOS
	Introduction
	Super Loop How it works
	Super Loop The Waste
	Benefits of RTOS
	RTOS and a single task

	Novo composition
	Novo Queues
	Task Priorities
	Task and Event Handles
	Novo Events
	Counting Semaphore
	Maximum Number of Priorities
	Maximum Number of Tasks
	Hardware and Software Stacks

	Important notes on usage
	Placement of yielding functions
	Quantity of yielding functions

	Task Functions

	Novo API
	Novo Base Functions
	SysInit
	SysCreateTask
	SysStartTask
	Sys_StopTask
	Sys_Yield
	SysGetTaskStatus
	Task Priority Functions
	SysSetPriority
	SysGetPriority

	Event Functions
	SysSignalSemaphore
	SysSignalSemaphoreIsr
	Sys_WaitSemaphore
	SysTrySemaphore
	SysReadSemaphore
	SysWaitTimedOut

	Timer Functions
	SysTimerUpdate
	Sys_Sleep
	SysGetTime
	SysGetElapsedTime

	Critical Sections
	SysCriticalSectionBegin
	SysCriticalSectionEnd
	Critical Sections General Notes
	Critical Sections with Prioritized Interrupts Notes
	Changing Critical Section Macros

	Building Custom Novo Libraries
	Important Note
	Files to Create for a Custom Build
	Typical Novo Library project file
	Typical Novo Configuration file Contents
	Naming convention
	Build Options
	Building the custom library
	How to use the custom library

	Semaphores and Priorities Under the hood
	Semaphores Queues
	What happens when a Semaphore is signaled
	Pending Event Queue

	Sharing a resource between threads
	Overview
	Example 1 - For BoostC Compiler
	Example 2 - For BoostC Compiler

	General Support

